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7Welbio, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
8Center for Biomics
9Department of Cell Biology

Erasmus MC, 3000 CA Rotterdam, the Netherlands
10Unit Vascular Cell Biology, VIB Department for Molecular Biomedical Research, University of Gent, 9052 Gent, Belgium
11NYU Neuroscience Institute, Department of Physiology and Neuroscience, New York University Langone Medical Center, New York,
NY 10016, USA
12Developmental Neurobiology, Institute of Neuroscience, Université Catholique de Louvain UCL, 1200 Brussels, Belgium
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SUMMARY

GABAergic interneurons mainly originate in the
medial ganglionic eminence (MGE) of the embryonic
ventral telencephalon (VT) and migrate tangentially
to the cortex, guided by membrane-bound and
secreted factors. We found that Sip1 (Zfhx1b,
Zeb2), a transcription factor enriched in migrating
cortical interneurons, is required for their proper
differentiation and correct guidance. The majority of
Sip1 knockout interneurons fail to migrate to the
neocortex and stall in the VT. RNA sequencing
reveals that Sip1 knockout interneurons do not
acquire a fully mature cortical interneuron identity
and contain increased levels of the repulsive re-
ceptor Unc5b. Focal electroporation of Unc5b-en-
coding vectors in the MGE of wild-type brain slices
disturbs migration to the neocortex, whereas re-
ducing Unc5b levels in Sip1 knockout slices and
brains rescues the migration defect. Our results
reveal that Sip1, through tuning of Unc5b levels, is
essential for cortical interneuron guidance.

INTRODUCTION

Themammalian telencephalon is critical to higher brain functions

such as processing of sensory and motor input, learning, and
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memory. This higher-order information processing relies on

both excitatory projection neurons and inhibitory g-aminobutyric

acid (GABA)ergic interneurons, which are essential to modulate

the electrical activity of the projection neurons onto which

they synapse. In the cortex, interneurons comprise a minority

(20%–30%) of neurons compared to excitatory neurons, but

they display a remarkable diversity and can be classified based

on morphological, physiological, molecular, and synaptic fea-

tures (Markram et al., 2004; Ascoli et al., 2008). In mice, cortical

interneurons originate in the medial and caudal ganglionic

eminences (MGE and CGE) and preoptic area (POA) (Fogarty

et al., 2007;Miyoshi et al., 2007, 2010; Gelman et al., 2009; Rubin

et al., 2010). Besides cortical interneurons, the MGE also gener-

ates interneurons destined for the striatum and hippocampus,

and oligodendrocytes and projection neurons for the globus pal-

lidus, amygdala, and septum (Kessaris et al., 2006; Xu et al.,

2008). The specification, migration, and integration of cortical

interneurons are complex but precisely orchestrated processes,

and disturbances in interneuron development and function have

been linked to various neurodevelopmental disorders (Levitt

et al., 2004).

Once specified in the ganglionic eminences, interneurons

migrate to different telencephalic structures, including the neo-

cortex. For this, they need to interpret guidance information

supplied by a range of cues in the surrounding ventral telenceph-

alon (VT). Cortical interneurons express the receptor EphA4 and

are repulsed by ephrinA5 in the ventricular zone (VZ) of the MGE

and by ephrinA3 in the striatum (Zimmer et al., 2008; Rudolph

et al., 2010). Neuropilin receptors (Nrp1, Nrp2) prevent cortical

interneurons from entering the striatum, which produces the

mailto:danny.huylebroeck@med.kuleuven.be
mailto:eve.seuntjens@med.kuleuven.be
http://dx.doi.org/10.1016/j.neuron.2012.11.009


Figure 1. Sip1 Is Present in MGE-Derived

Migrating Cortical Interneurons

(A) Crossing the Nkx2-1-Cre mouse with the

RCEfl/fl reporter mouse labels the POA and MGE

(except for themost dorsal part) and its derivatives.

(B–D) Tracing experiments combined with Sip1

immunohistochemistry at E14.5 show many Sip1/

GFP double-positive (+) cells migrating through

the LGE (B). Many Sip1+/GFP+ cells enter the

cortex (C) and are found in the SVZ/IZ (D), sug-

gesting that these cells are MGE-derived cortical

interneurons (white arrowheads, Sip1+/GFP+

cells; open arrowhead, Sip1+/GFP� cell; asterisk

indicates Sip1+ cortical projection neurons).

See also Figure S1.
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repulsive Sema3a and Sema3f ligands (Marı́n et al., 2001). Dele-

tion of Robo1 results in an increased influx of interneurons in the

striatum and cortex (Andrews et al., 2006; Andrews et al., 2008).

Robo1 interacts with Nrp1 and modulates semaphorin-neuropi-

lin/plexin signaling to direct cortical interneurons around the

striatum (Hernández-Miranda et al., 2011). Different isoforms

of neuregulin-1 act as short- and long-range attractants for

migrating cortical interneurons, which express the receptor

gene ErbB4 (Flames et al., 2004). Stromal-derived factor-1

(SDF1, Cxcl12) and its receptors Cxcr4 and Cxcr7 are implicated

in chemotaxis and positioning of interneurons in the cortex

(Stumm et al., 2003; Li et al., 2008; López-Bendito et al., 2008;

Sánchez-Alcañiz et al., 2011; Wang et al., 2011).

Transcription factors are ideal candidate proteins to specify

but also sort the different types of interneuron through controlling

the synthesis of such guidance cues and receptors (for recent

reviews, see Chédotal and Rijli, 2009; Corbin and Butt, 2011).

Persistent expression ofNkx2-1 allows a subset of MGE-derived

interneurons to downregulate Nrp2 and migrate into the stria-

tum, whereas interneurons destined to the cortex downregulate

Nkx2-1, maintain high Nrp2 levels, and avoid the striatum (Nó-

brega-Pereira et al., 2008). However, evidence for a functional

link between other transcription factors and guidance cues for

migrating interneurons remains limited.

Sip1 (also named Zeb2, Zfhx1b) is a transcription factor impli-

cated in embryonic development and in epithelial-to-mesen-

chymal transition (EMT) (for a recent review, see Conidi et al.,

2011). Sip1 contains two clusters of zinc fingers that mediate

binding to two spaced E-box sequences in regulatory regions

of its target genes. Furthermore, it has domains that bind acti-

vated Smads, CtBP-1/2, and the chromatin-remodelling core-

pressor complex NuRD, respectively (Verschueren et al., 1999;

van Grunsven et al., 2007; Verstappen et al., 2008). In humans,
Neuron 77, 70–
mutations in one ZFHX1B allele cause

Mowat-Wilson syndrome (MWS), charac-

terized by severe intellectual disability

and typical facial features, and many

patients present with seizures, corpus

callosum agenesis, Hirschsprung dis-

ease, and congenital heart disease (Zwe-

ier et al., 2002; Garavelli and Mainardi,

2007).
Using various conditional knockout (KO)mice, we showed that

Sip1 regulates, in a non-cell-autonomous manner, hippocampal

development and the timing of cortical neurogenesis and glio-

genesis (Miquelajauregui et al., 2007; Seuntjens et al., 2009).

Here, using both loss- and gain-of-function approaches in vivo

and ex vivo, we show that Sip1 is essential for cortical inter-

neuron migration. Deletion of Sip1 leads to a severe reduction

in the number of interneurons in the embryonic and postnatal

cortex. Sip1 KOMGE-derived interneurons do not acquire a fully

mature cortical interneuron identity, and contain increased

levels of the guidance receptor Unc5b. Overexpression of

Unc5b in wild-type (WT) MGE largely abrogates interneuron

migration to the cortex, while reduction of Unc5b levels in Sip1

mutant interneurons in vitro or in vivo rescues their migration

defect. Thus, we discovered a role for Sip1 as a critical transcrip-

tion factor regulating Unc5b mRNA levels during cortical inter-

neuron migration.

RESULTS

Sip1 Is Abundantly Present in Migrating Cortical
Interneurons
We documented the presence of Sip1 in the mouse VT by immu-

nohistochemistry at embryonic day (E) 14.5 (Figure 1; Figure S1

available online). Sip1 is present at low levels in the VZ of the

MGE and at higher levels in the mantle zone (Figures S1A,

S1A0, S1B, and S1B0). In the LGE, we detected Sip1 in a sickle-

shape pattern in the subventricular zone (SVZ), and in scattered

Sip1-positive (+) cells in the mantle zone (Figures S1A, S1A0,
S1B, and S1B0). Sip1 was also present in the CGE (Figures

S1C and S1C0). Furthermore, Sip1+ cells were found across

the pallial-subpallial boundary (PSB) and in the SVZ/ interme-

diate zone (IZ) and cortical plate (asterisk in Figure S1A).
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Figure 2. Hampered Tangential Migration

of Sip1 Mutant Cortical GABAergic

Interneurons

(A and A0) In situ hybridization for Gad67 mRNA at

E12.5 detects GABAergic interneurons that start

invading the cortical anlage in control embryos

(arrowhead) (magnification in A0).
(B, B0, C, and C0) None or only few Gad67+ inter-

neurons are detected in the cortex of Sip1jNestin
(B and B0 ) and Sip1jNkx2-1 (C and C0) mutants.

(D–L) In E16.5 control embryos, GABAergic inter-

neurons are spread throughout the cortical plate

(D and magnification in H; G is a schematic

representation of sections shown in D–F and indi-

cates the area of the magnifications in H–L). In the

Sip1jNestin mutant, almost no interneurons are

detected in the cortex at E16.5 (E, I). Sip1 deletion

in the MGE (Nkx2-1-Cre, F and K) or in the CGE,

LGE, and a portion of the MGE (Gsh2-Cre, L)

mainly reduces the number of interneurons in the

cortical MZ and IZ. In the Sip1jDlx5/6 mutant, only

few interneurons are found in the cortex (J).

(M, M0, N, and N0) The RCEfl/fl reporter mouse line

shows that the majority of the Sip1mutant Nkx2-1-

Cre-derived cells (M and M0) do not migrate to the

cortex when compared to a WT control (N and N0 ).
Scale bar in (C0) corresponds to 50 mm (A0–C0), and
scale bar in (L) and (N0) to 100 mm (H–L, M0, N0 ).
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To assess whether these cells were MGE-derived interneu-

rons destined to the cortex, we traced them by crossing the

Nkx2-1-Cre mouse line (Kessaris et al., 2006) with RCEfl/fl

(i.e., R26RCAG-loxP-stop-loxP-EGFP) reporter mice (Sousa et al.,

2009). As shown previously (Kessaris et al., 2006; Fogarty

et al., 2007), cells derived from the POA and MGE, except

those from its most dorsal part, were labeled. We monitored

green fluorescent protein (GFP) and Sip1 in the E14.5 telen-

cephalon (Figure 1) and confirmed that Sip1 was present at

low levels in the VZ of the MGE and at increasingly higher

levels in the mantle zone (Figure 1A). Most GFP+ cells migrat-

ing through the LGE contained Sip1 (Figures 1A and 1B).

The majority of MGE-derived cells crossing the PSB were

Sip1+ (Figure 1C) and they maintained high Sip1 levels while

migrating through the neocortex (Figure 1D), demonstrating

that Sip1 is present in MGE-derived migrating interneurons.

Sip1+ but GFP� cells were also observed in the cortical SVZ/IZ
72 Neuron 77, 70–82, January 9, 2013 ª2013 Elsevier Inc.
(Figure 1C), presumably representing

CGE-derived interneurons.

The Absence of Sip1 Hampers
Migration of GABAergic
Interneurons to the Cortex without
Affecting Early Regionalization of
the Ventral Telencephalon
We investigated the role of Sip1 in inter-

neurons by removing Sip1 using the Nes-

tin-Cre mouse line (Tronche et al., 1999),

which inactivates Sip1 in the entire

embryonic CNS and the Nkx2-1-Cre line

(for details on the crossing schemes, see
Supplemental Experimental Procedures). We refer to Nestin-

Cre;Sip1fl/KO as ‘‘Sip1jNestin’’ (KO) mice and to the Nestin-Cre;

Sip1fl/WT control mice as ‘‘WTjNestin’’ mice; a similar convention

is used for crosses with other Cre lines. We confirmed Sip1

removal from the entire telencephalon in Sip1jNestin mice

(Figures S1E and S1E0), and in the POA/MGE (except its most

dorsal portion) in Sip1jNkx2-1 mutants (Figures S1F and S1F0)
when compared to control mice at E12.5 (Figures S1D and S1D0).
At E12.5, when the first MGE-derived interneurons reach the

dorsal telencephalon in control embryos (Figures 2A and 2A0),
none or only few GABAergic interneurons (marked by Gad67)

migrated in the cortical anlage of Sip1jNestin and Sip1jNkx2-1
mice (Figures 2B, 2B0, 2C, and 2C0). At E16.5, hardly any

Gad67+ cells were found in the Sip1jNestin cortex (Figures 2E

and 2I; control in Figures 2D and 2H), while several were still

present in the Sip1jNkx2-1 cortex (Figures 2F and 2K), although

lower in number than in controls. Those Gad67+ cells in the



Figure 3. Sip1 Deletion Does Not Influence Early Regionalization of

the Ventral Telencephalon

(A and A0) The expression domain of Mash1, an important regulator of neu-

rogenesis, is unchanged upon Sip1 deletion.
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Sip1jNkx2-1 mutant cortex might have originated from the

untargeted CGE. Lineage tracing with the RCEfl/fl reporter in

the Nkx2-1 model confirmed that the migration of MGE-derived

cells to the cortex was severely compromised in the absence of

Sip1 (Figures 2M, 2M0, 2N, and 2N0).
We substantiated these observations using two additional Cre

mouse lines: Dlx5/6-Cre, which targets the entire VT, except its

VZ (Stenman et al., 2003), and Gsh2-Cre, which produces Cre

in the LGE, CGE, and a portion of the MGE (Kessaris et al.,

2006). Both Sip1jDlx5/6 and Sip1jGsh2 brains had reduced

numbers of Gad67+ cells in the cortex, comparable to those

found in Sip1jNestin and Sip1jNkx2-1 mutants, respectively

(Figures 2J and 2K). In contrast to Sip1jDlx5/6 and Sip1jNestin
mice, which die at birth, Sip1jNkx2-1 and Sip1jGsh2 mice are

viable. Interestingly, in the latter animals, we occasionally ob-

served myoclonic seizures during the third postnatal week.

Next, we assessed whether the lack of Sip1 modified the

expression of acknowledged MGE/VT markers. We performed

in situ hybridization for Mash1, Dlx2, Nkx2-1, and Lhx6, and

immunohistochemistry for Gsh2 in E12.5 control and KO

sections. At this stage, all markers were still present in their

appropriate domains in Sip1jNestin and Sip1jNkx2-1 embryos

(Figures 3A–3E), suggesting that deletion of Sip1 did not affect

early regionalization of the VT.

Defective Migration of Sip1-Deleted Cortical
Interneurons Is Due to Removal of Cell-Autonomous
Effects of Sip1
In the cortex, Sip1 controls a non-cell-autonomous feedback

mechanism that emanates from Sip1+ postmitotic neurons to

progenitor cells, thereby timing neurogenesis and gliogenesis

(Seuntjens et al., 2009). We therefore investigated whether the

action of Sip1 in the MGE would be cell autonomous or not.

We performed focal electroporations (Figure 4A) with Cre

plasmid pCIG-Cre in the MGE of E13.5 Sip1fl/fl organotypic brain

slices (Figures 4D and 4D0). After 3 days in vitro (DIV), we counted

the total number of GFP+ cells in the slice and calculated the

percentage of GFP+ neurons that reached the cortex. As

controls, we electroporated pCIG-Cre in WT slices or a GFP-en-

coding plasmid (pCIG) in Sip1fl/fl slices (Figures 4B, 4B0, 4C, and
4C0). In both controls, targeted GFP+ cells migrated to the cortex

(58.3% for pCIG in Sip1fl/fl slices, n = 11; 56.8% for pCIG-Cre in

WT slices, n = 13 slices; quantification in E). By contrast, only

14% of the Sip1-deleted cells (pCIG-Cre in Sip1fl/fl slices, n =

19 slices, p < 0.001; two independent experiments) migrated

to the cortex (Figures 4D and 4E).

The failure of the neighboring Sip1+ cells to rescue the

defective tangential migration of Sip1 mutant interneurons
(B and B0 ) Dlx2 is expressed in the ganglionic eminences (MGE, LGE, and

CGE), and its expression is not changed in the Sip1jNkx2-1 and Sip1jNestin
mutants at E12.5.

(C and C0) Gsh2 marks the LGE and CGE, but also to a lesser extent the MGE.

Gsh2 levels are not changed in the MGE of Sip1 mutants, suggesting that the

MGE does not adopt an LGE or CGE identity.

(D and D0 ) Expression of Nkx2-1 is not affected in Sip1 mutants.

(E and E0) Lhx6, a direct target gene of Nkx2-1, was also correctly expressed in

the Sip1 mutants at E12.5.

Neuron 77, 70–82, January 9, 2013 ª2013 Elsevier Inc. 73



Figure 4. Sip1 Has a Cell-Autonomous Role

in Cortical Interneurons

(A) Experimental design to delete Sip1 in a limited

number of MGE cells. pCIG (pCAGGS-IRES-

eGFP) or pCIG-Cre plasmids were focally elec-

troporated (EP) in the MGE of Sip1fl/fl E13.5

organotypic brain slices and cultured for 3 DIV.

To check for a possible toxic effect caused by

Cre accumulation, the pCIG-Cre construct was

electroporated in WT slices.

(B–D) Representative pictures of each experi-

mental condition. The border between cortex and

VT is indicated by the dotted line. Lower panels

(B0–D0) with digitally added dots indicate the

counted GFP+ cells.

(E) We counted the total number of GFP+ cells per

slice and calculated the percentage of GFP+

neurons in the cortex. Electroporation of pCIG-Cre

in WT MGE or pCIG in Sip1fl/fl MGE resulted in

similar proportions of targeted cells in the cortex

(58.28% ± 2.61%, n = 11 slices and 56.83% ±

2.74%, n = 13 slices, respectively). Migration to the

cortex of Sip1-deficient interneurons is strongly

decreased (13.63% ± 1.07%, n=19) compared to

both controls. Error bars represent SEM of two

independent experiments. Statistical significance

was determined using the c2 test (*p < 0.001).
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demonstrated that the effects of Sip1 in interneuron migration

are cell autonomous.

Sip1-Deficient Interneurons Are Intrinsically Able to
Migrate
We next investigated whether Sip1-deficient cells had the

intrinsic capacity to migrate. We cultured MGE explants from

WT;- and Sip1;RCEjNkx2-1 E14.5 embryos in Matrigel (Fig-

ure S2A) according to (Wichterle et al., 1999) and measured

the maximum migration distance of the cells from the explants

after 1 and 2 DIV (Figures S2B and S2B0). Sip1 KO interneurons

migrated about 15% less far from the explants than WT counter-

parts after 1 DIV (WT: 252.95 ± 13.70 mm, n = 29 versus KO:

215.77 ± 15.41 mm, n = 27; p = 0.0530; n = number of explants)

or 2 DIV (WT: 685.06 ± 33.82 mm, n = 17 versus KO: 579.84 ±

22.68 mm, n = 21; * p = 0.0076) (Figure S2C), suggesting reduced

migration speed. If the latter would be the sole cause of the

observed reduction in interneuron numbers in the cortex of

Sip1 KO embryos, then the defect could be restored at later

stages, when all targeted cells had sufficient time to populate

the cortex. However, in Sip1;RCEjNkx2-1 mutants, only a few

GFP+ cells were found in the cortex at later stages (E18.5;

Figures S2D and S2E).

A large group of misrouted Sip1 KO cells was found in the

caudal VT of Sip1;RCEjNkx2-1 brains at E16.5 (Figures 5A,

5A0, S3A, and S3A00). This ectopic group of cells was positive

for Nkx2-1 (Figures 5B and 5B0) and Lhx6 (Figures 5C and 5C0).
Similar ectopia were found in the otherSip1mutants (Sip1jNestin
[see Figures 5 and S3]; Sip1jDlx5/6 and Sip1jGsh2 [data not

shown]). These GFP+ ectopic cells did not locate to the globus

pallidus (GP) area; also, they were Er81� indicating this is not

an ectopic GP (Figures S3A and S3A00, where GP is indicated

by an asterisk and ectopic cells by an arrowhead; results not
74 Neuron 77, 70–82, January 9, 2013 ª2013 Elsevier Inc.
shown). The ectopia was also positive for neuropeptide-Y

(NPY), somatostatin (Sst), and Sox6 (Figures 5D and 5E, and

data not shown), as well as for receptors typically present

in migrating cortical interneurons, such as Nrp2 and ErbB4,

indicating cortical interneuron features (Figure S3, all panels B

and C).

We investigated whether Sip1;RCEjNkx2-1 cells present in the
cortex 3 weeks after birth contributed to the cortical interneuron

lineages. Quantification of the number of GFP+ cells in the cortex

showed there were much less MGE-derived interneurons in the

Sip1 mutants (48% of the control number) (Figure 6E). Further-

more, Sip1 KO cells largely failed to populate the more medial

parts of the cortex and remained clustered in the lateral cortex

(KO versus control in lateral, 60.4% compared to 35.8% of the

total population of GFP+ cells for each genotype (i.e., 61

compared to 75 cells); intermediate, 25.5% compared to

37.2% [i.e., 26 compared to 78 cells]; and medial, 14.1%

compared to 27.0% [i.e., 14 compared to 56 cells]; Figures

6A–6C, 6A0–6C0, 6D, 6E, S4A, S4B, and S4E). Interestingly, the

deep layers (marked by Ctip2) seemed to contain fewer GFP+

neurons when compared to control mice (Figures 6A–6C, 6A0–
6C0, S4A, and S4B). We also analyzed the expression of parval-

bumin (PV), Sst, calretinin (CR), and NPY in Sip1-deleted cortical

interneurons. Most of the WT;RCEjNkx2-1 cells in the cortex

were PV+ or SST+ interneurons, less were NPY+, and almost

none contained CR, as expected for MGE-derived cells (Figures

6F–6I, quantification in 6J and 6K). We found significantly fewer

PV-, SST-, and NPY-containing interneurons in the cortex of

Sip1;RCEjNkx2-1 mutants (absolute numbers, p < 0.0001 for

PV and SST, p = 0.0128 for NPY) (Figures 6F0-6I0, and 6J). Inter-

estingly, the relative contribution of each of these interneuron

subtypes to the total amount of targeted (GFP+) cells was not

changed compared to control mice (Figure 6K).



Figure 5. MGE-Derived Cells Form an Ectopia in the Caudal Part of

the Sip1 Mutant Ventral Telencephalon

(A and A0) Sip1 KOMGE-derived cells migrate but locate in a caudal ectopia in

the VT as marked by GFP+ staining in Sip1;RCEjNkx2-1 brains (E16.5).

(B and B0, C and C0) Nkx2-1 and Lhx6 are also found in this ectopic cell

population of allSip1mutant embryos (Sip1jGsh2 and Sip1jDlx5/6mutants not

shown). In Sip1 mutants, Nkx2-1 and Lhx6mRNA domains in the caudal MGE

are expanded.

(D, D0, E, and E0 ) The ectopic cells are also positive for neuropeptide Y (Npy)

and somatostatin (Sst), markers of subsets of MGE-derived interneurons.

See also Figures S2 and S3.
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Taken together, Sip1 KO MGE-derived interneurons have the

intrinsic capacity to migrate, yet largely fail to reach the cortex

during embryogenesis. Instead, a large portion appears to be

misrouted in the VT, indicating a guidance problem. Three weeks

after birth, the small number of Sip1 KO interneurons in the

cortex do not distribute properly, yet still contribute to the

different interneuron subtypes.

RNA Sequencing Reveals that Transcript Levels of
Differentiation Factors and Guidance Cues Are Affected
in Sip1 Mutant Interneurons
To further characterize the nature of the Sip1 KO cells and to

understand the cause of the misrouting, we compared control

and Sip1 mutant transcriptomes via RNA sequencing (RNA-

seq) of fluorescence-activated cell sorting (FACS) sorted MGE-

derived cells, obtained fromWT;- and Sip1;RCEjNkx2-1 telence-
phali (three biological repeats, Illumina HiSeq-2000 platform),

respectively. This approach identified differentially expressed

genes irrespective of the cells’ position in the telencephalon.

Gene expression levels were derived from the read counts via

HT-Seq and normalized across the six samples using DE-Seq

(false discovery rate [FDR] < 0.05 cutoff) (Anders and Huber,

2010). Hence, the obtained values are normalized mean read

counts allowing direct comparison of control and mutant

samples. We assessed the correlation among the three biolog-

ical repeats (Figure S5A). The control samples and the KO

samples clustered in two highly different groups, indicating

that the expression differences in our samples reflected

changes caused by Sip1 deletion. A principal component anal-

ysis showed grouping of the samples according to the most

important first principal component (Figure S5B). The drastic

decrease of mapped reads on the floxed exon7 confirmed the

efficiency of Sip1 deletion (Figure S5C). Differential expression

analysis using HT-Seq and DE-Seq identified 505 significantly

upregulated and 366 significantly downregulated genes in

Sip1;RCEjNkx2-1 compared to control cells (Table S7).

To study the impact of Sip1 deletion on differentiation of MGE-

derived cell populations, we listed the expression differences of

transcription factors (TFs) related to these populations in control

versusSip1KOcells (Table S1).We found that transcript levels of

Dlx1, Dlx2, and Lhx6 were not affected. Some TFs present in

cortical interneurons (Cux2,Maf, andMafb) were clearly reduced

(gray overstrike when > 2-fold reduction), whereas others (Satb1

and Sox6) were not changed or even increased. Also, the tran-

script levels for oligodendrocyte TFs Olig1, Olig2, and Sox10

were downregulated, whereas Id4, an inhibitor of oligodendro-

cyte differentiation, was upregulated in the absence of Sip1.

Some TFs related to striatal (Nkx2-1), cholinergic (Lhx8 and

Isl1), or pallidal (Gbx1) development were increased in Sip1

KO, but none exceeded 2-fold upregulation. Furthermore, we

compared the mRNA levels of 11 additional genes (Cxcr4,

Gria1, Ets1, Cxcr7, Grik1, Cntnap4, Grip1, Chl1, Cacng2,

Csdc2, and Scn1a) previously reported as enriched in embryonic

cortical interneurons (Batista-Brito et al., 2008; Marsh et al.,

2008; Faux et al., 2010) and included Nrp2, a gene related

to migration of cortical interneurons (Nóbrega-Pereira et al.,

2008). In the Sip1 KO samples, 10 of these 11 genes were

downregulated, whereas Nrp2 was upregulated. Most of the
Neuron 77, 70–82, January 9, 2013 ª2013 Elsevier Inc. 75



Figure 6. Sip1 Mutant Cells Distribute Abnormally in the Postnatal Cortex but Still Contribute to the Different Interneuron Populations

(A–C and A0–C0) Three weeks after birth, fewMGE-derived interneurons are found in the cortex of Sip1;RCEjNkx2-1mice. Compared to the control (A–C), the bulk

of Sip1 KO cells remains in the lateral cortex (A0), while only a minority are found in more medial regions (B0 and C0).
(D) Boxed areas represent the three cortical regions in the pictures in A, A0 to C, C0.
(E) Quantification of the absolute number of GFP+ cells in each of these regions shows a significant reduction in the intermediate and medial areas (KO versus

control in lateral, 61 compared to 75 cells; intermediate, 26 compared to 78 cells; and medial areas, 14 compared to 56 cells).

(F–I and F0–I0) Coexpression of GFP with the interneuron markers PV, SST, CR, and NPY was compared between WT;RCEjNkx2-1 (F–I) and Sip1;RCEjNkx2-1
(F0–I0). White arrowheads indicate double-positive cells, empty arrowheads point to GFP+/marker� cells and an asterisk marks GFP� interneurons. Green and

red channels are shown for the indicated cells.

(J) The absolute number of GFP/marker double-positive cells was significantly decreased in the Sip1 mutant (KO versus control for PV, 8 compared to 30 cells;

SST, 7 compared to 20 cells; NPY, 1 compared to 3 cells) except for CR (KO versus control for CR, 1 compared to 1 cell).

(K) The relative contribution of each of the different MGE-derived cell types was not changed (KO versus control for PV, 32% compared to 40%; SST, 30%

compared to 28%; CR, 25% compared to 2%; NPY, 4% compared to 5%).

Scale bar in C0 is 250 mm (A, A0 to C, C0) and 50 mm in I0 (F, F0 to I, I0). Error bars represent SD. Statistical significance was determined via the Student’s t-test

(*p < 0.0001, #p < 0.05).

See also Figure S4.
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downregulated genes are related to interneuron function or

migration in the cortex itself, suggesting that Sip1 deletion

disturbed the maturation of MGE-derived cells to functional

cortical interneurons.

Next, we performed an unbiased gene ontology (GO) en-

richment analysis using the GOrilla tool (http://cbl-gorilla.cs.

technion.ac.il) (Tables S2 andS3). Genes related to theGO terms

‘‘cell cycle’’ and ‘‘mitosis’’ were enriched among the downregu-

lated genes (Table S2). However, although proliferation at E12.5

in the MGE of Sip1jNestin animals was decreased by 25% (n = 5

for each condition, p = 0.0023), cell cycle exit was not affected

and we could not detect a similar reduction in proliferation in

Sip1jNkx2-1 animals (data not shown). On the other hand, genes

related to ‘‘axon guidance’’ were enriched (to a factor 6.5; Table

S3) among the most upregulated genes in the Sip1 mutants. As

predicted from our observed cell-autonomous action mode

of Sip1, their gene products localized preferentially to the

membrane and were implicated in ‘‘signaling by transmembrane

receptors’’ (Table S3). Intriguingly, all four genes relating to the

GO term ‘‘Netrin receptor activity’’ (i.e., Deleted-in-colorectal-

carcinoma [Dcc], Unc5a, Unc5b, and Unc5c) were ranked within

the first 294 of all 8,485 genes listed (Enrichment = 28.86; p =

3.76E-6). In fact, many of the ligands or receptors involved in

the Netrin/Unc5 pathway had upregulated expression in Sip1

KO cells (Figure S6A). Transcripts encoding the Netrin1 receptor

Unc5b (5.3-fold up) and the ligand Netrin1 (Ntn1) itself (2.4-fold

up) were particularly increased (Figure S6A), which was

confirmed by quantitative PCR (qPCR) (Figure S6B).

Taken together, E14.5 Sip1 KO cells downregulate markers of

maturing cortical interneurons, and possess disturbed levels of

guidance cues, especially those related toNetrin/Unc5 signaling.

Increased Unc5b Levels Lead to Aberrant Interneuron
Migration
We examined the expression of several receptors and ligands

of the Netrin/Unc5 system. Unc5b mRNA was barely detectable

in the control MGE, whereas Unc5b+ cells accumulated in the

Sip1;RCEjNkx2-1 MGE (Figures 7A, 7A0, 7B, and 7B0). Ntn1

levels were increased around the striatal area as well as in the

caudal ectopia (Figures S6C and S6C0). Unc5c levels increased

in the VT of Sip1 mutants, whereas Dcc expression was un-

changed (Figures S6D, S6E–D 0, and S6E0). The fibronectin and

leucine-rich transmembrane proteins Flrt2 and Flrt3 are also

ligands for Unc5b (Karaulanov et al., 2009; Yamagishi et al.,

2011). Flrt2 was abundant in the LGE and striatal anlage in

control and Sip1jNkx2-1 telencephalon (Figures S6F and S6F0),
whereas Flrt3, present at the border between the LGE and the

MGE and at low level in the MGE in the control, seemed to be

expanded in the mutant VT (Figures S6G–S6G0). Taken together,

both qPCR and in situ hybridization analysis confirmed the

increased transcript levels of Unc5b and Ntn1 found by RNA-

seq in Sip1;RCEjNkx2-1 cells.

To test which candidate cue(s) is (are) likely to (mis)guide

cortical interneurons, we focally electroporated WT MGEs with

Ntn1 or Unc5b expression vectors. Overexpression of Ntn1

had no obvious effect on interneuron migration when compared

to the GFP control (Figures S7A–S7C). In contrast, using either

a mouse or rat Unc5b construct, we found that Unc5b over-
expression disrupted the migration of interneurons toward the

cortex (mUnc5b: 16.2%, n = 11 versus GFP: 47.6%, n = 16

slices; p < 0.0001) (Figures 7E–7G, quantification in H; Figures

S7A, S7B, and S7D). Interestingly, cells overproducing Unc5b

tended to migrate in a ventral direction (Figure 7G).

As dependence receptor, Unc5b may also trigger cell death in

absence of its ligand. We therefore investigated presence of

cleaved caspase-3 as indicator of apoptosis in electroporated

slices (Figures S7E and S7F). We did not observe a difference

in cell death in GFP or Unc5b electroporated cells, suggesting

that the migration defect induced by Unc5b overproduction

is not a consequence of apoptosis. We also never observed

increased cell death in the MGE of Sip1 mutants (E14.5; data

not shown).

If too high levels of Unc5b hamper the migration of Sip1 KO

interneurons, then we should be able to rescue their migration

by downregulating Unc5b. We therefore electroporated Unc5b

small interfering RNA (siRNA) or a nontargeting (NT) mouse

siRNApool in theMGE of Sip1jNkx2-1mutant slices. To visualize

targeted Sip1 KO cells, a conditional dsRed-expressing con-

struct (pCALNL) was coelectroporated (Figure 7I). Electropora-

tion of Unc5b siRNA almost doubled the number of Sip1 mutant

cells reaching the cortex (NT siRNA: 9.04%, n = 16 versus Unc5b

siRNA: 13.82%, n = 11 slices; p < 0.0001) (Figures 7J and 7K,

quantification in L). This indicates that decreasing the levels of

endogenous Unc5b partially rescues the migration defect of

Sip1 KO interneurons.

In addition, we could also rescue the interneuron migration

in vivo by using a Sip1 complementary DNA (cDNA)-encoded

transgene conditionally expressed from the ROSA locus (R26-

Sip1tg/tg). This mouse delivers a relatively small but constant

dose of Sip1 to cells that express Cre (M. Tatari and G. Berx,

personal communication). Because the RCE reporter is also

ROSA based, only hemizygous R26-Sip1 (R26-Sip1tg/wt)

samples could be obtained from FACS-sorted cells. Introduction

of R26-Sip1tg/wt increased Sip1 levels, while it reduced Unc5b

levels in E14.5 Sip1 KO cells, as measured by qPCR (represen-

tative samples shown in Figure 7D). Introduction of two R26-

Sip1-based alleles (R26-Sip1tg/tg) in a Sip1jNkx2-1 KO mouse

abolished the increase in Unc5b levels in the MGE (Figure 7C-

C0) and rescued the migration of interneurons to the cortex, as

seen at E16.5 (Figures 7M–7O and 7M0–7O0).
Altogether, our data show that Sip1 is needed for the proper

regulation of the expression level of Unc5b in MGE-derived

interneurons. Furthermore, our results also indicate that the

local tuning of Unc5b expression in the MGE mantle zone is

essential to direct the migratory path of these interneurons to

the cortex.

DISCUSSION

In this study, we identify Sip1 as a critical, cell-autonomously

acting transcription factor required in GABAergic interneurons,

for their efficient migration to the cortex. Deletion of Sip1 in the

MGE results in misrouting of MGE-derived interneurons, indi-

cating a guidance defect. Transcriptome analysis using RNA-

seq followed by gain-of-function studies show that increased

levels of Unc5b inhibit interneuron migration to the cortex.
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Figure 7. Tuning of Unc5b Levels Is Crucial for Directed Migration of MGE-Derived Cortical Interneurons

(A and B) In situ analysis in control and mutant brain sections reveals increased Unc5b levels in the Sip1jNkx2-1 MGE (open arrowhead in B and B0)—rostral level

(A and B); more caudal level (A0 and B0).
(C) Unc5b levels in the MGE were restored to base levels by crossing Sip1 KOmice with a conditional Sip1 transgenic mouse line, R26-Sip1tg/tg (C and C0). Same

rostrocaudal levels shown as in (A, A0 and B, B0).
(D) Sip1 and Unc5b levels are inversely correlated, as shown by qPCR on representative E14.5 FACS-sorted control, KO and hemizygous rescue telencephalic

samples (WT;RCE-, Sip1;RCE- and Sip1;R26-Sip1tg/wt;RCEjNkx2-1, respectively). qPCR was performed in duplicate, and error bars represent SD.

(E) Scheme of the focal electroporation experiment.

(F and G) Plasmids encoding GFP or Unc5b were focally electroporated in the MGE of WT E13.5 organotypic brain slices. After 3 DIV, many GFP+ interneurons

were found in the cortex (F), whereas electroporation of mouse (m) Unc5b largely disrupted interneuron migration to the cortex (G).

(H) We calculated the percentage of GFP ormUnc5b interneurons in the cortex on the total amount of targeted cells per slice (GFP: 47.63%± 2.78%, n = 16 slices

versus mUnc5b: 16.22% ± 2.04%, n = 11 slices, p < 0.0001, c2 test). Error bars represent SEM, and n is the number of slices.

(I) Experimental design to rescue directed migration of Sip1 KO interneurons.

(J and K) Nontargeting (NT) siRNA ormouseUnc5b siRNAwas coelectroporatedwith a conditional dsRed-encoding plasmid (CALNL) tomark targeted cells in the

Sip1;RCEjNkx2-1 brain slices. After 3 DIV, almost no NT siRNA-treated Sip1 KO cells were present in the cortex (J). Reducing Unc5b levels in Sip1;RCEjNkx2-1
interneurons partially rescues the migration to the cortex (K).

(L) Quantification of the percentage of Sip1KO cells in the cortex upon NT or Unc5b siRNA electroporation (NT siRNA: 9.04%± 1.36%, n = 16 slices versus Unc5b

siRNA: 13.82% ± 1.76%, n = 16 slices, p < 0.0001, c2 test). Error bars represent SEM of two independent experiments, and n is the number of slices.

(M–O and M0–O0) Introduction of the R26-Sip1 transgene rescues the number of GABAergic interneuron in the Sip1 KO cortex (higher magnifications in M0–O0

taken at the same level as indicated in Figure 2G). Rescue of migration to the cortex was also obvious in the piriform cortex (arrowheads).

Asterisks in (F) and (G) and (J) and (K) indicate the area of injection, and the dotted line indicates the border between cortex and VT. Scale bars in C0 represent
250 mm (A–C, A0–C0), and 100 mm in O0 (M0–O0).
See also Figures S5–S7.
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Moreover, knockdown of Unc5b ex vivo in Sip1 mutant brain

slices or conditional expression of a Sip1 transgene in vivo in

a Sip1 KO background rescue this phenotype. Hence, we iden-

tify Unc5b as a key Sip1-modulated guidance receptor in

directed interneuron migration.
78 Neuron 77, 70–82, January 9, 2013 ª2013 Elsevier Inc.
The Sip1mutant mice studied here recapitulate some features

of MWS, in particular seizures, which are common in MWS

patients (Garavelli and Mainardi, 2007). Defects in cortical inter-

neuron migration typically cause seizures in mice (Powell et al.,

2003; Levitt et al., 2004). In line with this, we observed
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spontaneous seizures in Sip1jGsh2 mutant mice during the third

postnatal week, but not in young Sip1jNkx2-1 mice, suggesting

that Sip1 deletion in CGE as well as MGE-derived interneurons

(in Sip1jGsh2 mice) is more detrimental than in the MGE alone

(as in Sip1jNkx2-1 mice).

Sip1 is produced in larger amounts by migrating interneurons

than in progenitors, consistent with previous observations (Ba-

tista-Brito et al., 2008; Faux et al., 2010). Removal of Sip1 from

the entire CNS (Nestin-Cre) leads to a phenotype similar to that

observed in Sip1jDlx5/6 mice, in which VZ progenitors of the

VT are not targeted, suggesting that Sip1 functions at the level

of the SVZ and/or in postmitotic cells to drive differentiation.

Similarly, duringneural induction, aswell asduringmouseembry-

onic stem cell differentiation, Sip1 controls the formation of

definitive neural stem cells from progenitor cells (van Grunsven

et al., 2007; Dang et al., 2012). In embryonic hematopoiesis,

Sip1 is also essential for stem/progenitor cell (HSC/HPC) differ-

entiation and mobilization, but not for HSC formation itself

(Goossens et al., 2011). Likewise, Sip1 promotes differentiation

of oligodendrocyte precursor cells into myelinating cells (Weng

et al., 2012).

Our transcriptome analysis shows that E14.5 Sip1 KO cells

have reduced levels of several cortical interneuron markers

such as Cux2, Maf, Cxcr4, and Cxcr7, which may indicate

a differentiation deficit. Persistent levels of Nkx2-1 in particular,

instead of its downregulation in WT mice, may even suggest

that these interneurons acquire a striatal or cholinergic fate.

Unfortunately, at present, no other factors are known to be

uniquely expressed in embryonic striatal interneurons, making

a firm distinction between cortical or striatal interneuron fates

based on transcriptome analysis rather difficult. It cannot be

excluded that Sip1-deficient interneurons remain cortical in

character but fail to differentiate fully, either because of the

absence of Sip1 function(s) or rather because of a failure of these

cells to be exposed to cortical maturation factors that allow them

to articulate a fully mature cortical phenotype. Indeed, once in

the neocortex, Sip1 KO interneurons were able to contribute to

the PV+ or SST+ cell populations.

Clearly, a large portion of Sip1 KO cells never reach the cortex.

Our unbiased GO analysis shows that axon guidance and cell

adhesion factors were enriched among upregulated genes. In

addition to other TFs, Sip1 is known to affect cell-cell adhesion

in various contexts such as EMT and cancer, via direct regulation

of E-cadherin expression. Because Sip1 directly represses

E-cadherin (Comijn et al., 2001; van Grunsven et al., 2003) gain-

of-function or high levels of Sip1 correlate with deadhesion,

increased invasion, and bad prognosis in some cancers (Peinado

et al., 2007), whereas loss-of-function ofSip1 promotes adhesion

and leads to delayed/reduceddelamination of cranial neural crest

cells (VandePutteet al., 2003).Rather thanpossibly affectingcell-

cell adhesion, our results show that Sip1 deletion in interneurons

deregulates their directed migration. During embryogenesis, an

ectopic group of MGE-derived Sip1 KO cells was found in the

caudal VT. A comparable misrouting was described in the

Dlx1/2double-mutantbrain, accompaniedwithectopiaof cortical

interneuron-like cells (Marı́n et al., 2001; Long et al., 2009).

Our data indicate that upregulation of Unc5b mRNA levels in

interneurons results in their aberrant migration. Overexpression
of Unc5b by focal electroporation in cells of the MGE indeed

changes their direction of migration without influencing their

differentiation into cortical interneurons, leading to a dramatic

reduction in migration of interneurons to the cortex. Moreover,

using a conditional overexpression approach, we show that

Sip1 levels are inversely correlated with Unc5b levels. On the

other hand, Sip1 chromatin immunoprecipitation on conserved

regions of the Unc5b upstream regulatory region and the first

intron (100 kb around the transcription start site) did not detect

any direct binding of Sip1, suggesting that Sip1 represses

Unc5b expression indirectly (data not shown). Further work is

needed to identify the Sip1 transcriptional target that directly

represses Unc5b.

Which ligands could cause the misrouting of these Unc5b-

overexpressing MGE cells? Ntn1 mediates repellent responses

via Unc5b, alone or in combination with the receptor Dcc (Raja-

sekharan and Kennedy, 2009). Although Netrins have been

implicated in cell and axon migration and Ntn1 is present along

the migratory routes of GABAergic interneurons, the cortices of

Ntn1�/� and Slit1/2�/�;Ntn1�/� mutants as well as Dcc�/�

mutants display normal interneuron numbers at birth, suggesting

that these proteins are dispensable for tangential migration

(Anderson et al., 1999; Marı́n et al., 2003). However, Ntn1 inter-

action with a3b1 integrin, which is present on interneurons,

promotes their migration. Deletion of both Ntn1 and a3 integrin

(Itga3) results in a large ectopic aggregation of interneurons

in the VT, suggesting that Ntn1 signaling provides directional

information to migrating interneurons (Stanco et al., 2009). In

addition to Ntn1, Unc5 receptors also bind Flrt2 and Flrt3,

which results in a repellent interaction, based on observations

with Unc5d and Flrt2 during radial migration of cortical projection

neurons (Karaulanov et al., 2009; Yamagishi et al., 2011).

We detect both Flrt2 and Flrt3 in the LGE, a region through

which MGE-derived interneurons migrate en route to the

cortex. Moreover, Ntn1 is present in the VZ of the LGE and

MGE, as well as in the striatal anlage. High levels of Unc5b in

interneurons could repel them from these Ntn- and Flrt-rich

areas. Cells overexpressing Unc5b via focal electroporation

preferentially migrate in a ventral direction, suggesting that

they indeed avoid these Ntn1- and Flrt-rich areas. Further

studies are necessary to define which ligand(s) is (are) primarily

causing Sip1-deficient cells to deviate from their normal path in

the VT.

In conclusion, our results identify Sip1 as an essential tran-

scription factor for cortical interneuronmigration andmaturation.

Furthermore, we demonstrate that the regulation of precise

Unc5b levels by Sip1 represents a way of sorting the different

MGE cell types generated during embryogenesis. In general,

defining a global guidance code for each of the migrating cell

types in the VT will be a challenge for the future.

EXPERIMENTAL PROCEDURES

Animals

Mice were maintained in a CD1/Swiss background and were kept at KU

Leuven in accordance to Belgian and EU regulations. Mice carrying a floxed

(exon 7) Sip1 allele (Sip1fl/fl) (Higashi et al., 2002) were crossed with the

following Cre mouse lines: Nkx2-1-Cre and Gsh2-Cre (Kessaris et al., 2006),

Nestin-Cre (Tronche et al., 1999), Dlx5/6-Cre (Stenman et al., 2003), with
Neuron 77, 70–82, January 9, 2013 ª2013 Elsevier Inc. 79
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RCEfl/fl reporter mice (Sousa et al., 2009) and conditional Sip1 transgenic

ROSA26-Sip1tg/tg mice (M. Tatari and G. Berx, personal communication).

Immunohistochemistry and In Situ Hybridization

For the postnatal study, mice were deeply anesthetized with pentobarbital

before intracardiac perfusion with MEMFA fixative. Brains were removed

and fixed overnight, followed by progressive dehydration and paraffin embed-

ding. Coronal and sagittal sections from embryonic brains were prepared as

described (Seuntjens et al., 2009). Brain sections were processed for immuno-

histochemistry or in situ hybridization using an automated platform (Ventana

Discovery, Roche). Antibodies and mRNA probes are listed in Supplemental

Experimental Procedures. Sections were photographed using a Leica DMR

microscope connected to a Spot camera (Visitron Systems). Three nonover-

lapping pictures of 765 3 1,015 mm2 were taken in the cortex from the lateral

part of the cortex to the midline. The number of marker+, GFP+, and double

GFP+/marker+ cells was quantified. Three animals (age P20–P24) were used

for each genotype. Cells were counted via ImageJ software and results are

represented as mean ± SD. Statistical significance was determined using

the Student’s t test.

MGE Explant Cultures in Matrigel

E14.5 WT;RCEjNkx2-1 and Sip1;RCEjNkx2-1 brains were dissected in ice-

cold HEPES-buffered Leibovitz’s L15 medium (Invitrogen) and embedded in

4% low-melting-point agarose. Organotypic slices of mouse telencephalon

(coronal, 300 mm) were made using a vibratome (HM650V, Microm). MGE

pieces were embedded in Matrigel on culture slides (both from BD Biosci-

ences). Explants were cultured in Neurobasal/B27 medium for 1 or 2 DIV in

a 5% CO2-humidified incubator. Neurons that migrated the furthest away

from the explants determined a circumference around the explant for which

15 to 20 radii were measured determining the average maximum migratory

distance away from the explant. Statistical significance was determined via

Mann-Whitney U test.

FACS of MGE-Derived Cells

E14.5 WT;RCEj-, Sip1;RCEj- and Sip1;R26-Sip1;RCEjNkx2-1 telencephali

were isolated in ice-cold HEPES-buffered Leibovitz’s L15medium (Invitrogen),

meninges and olfactory lobes were removed and the tissue was cut in small

pieces. Cells were dissociated by incubation in Papain solution (150 ml per

brain of 12 U/ml) (Sigma) supplemented with DNaseI (30 U/ml) (Roche) for

30 min at 37�C followed by mechanical dispersion, washed with Dulbecco’s

PBS (Lonza) and passed over a 70 mm cell strainer (BD Falcon). Highly fluores-

cent cells (population P2) were sorted using a FACSVantage SE (FACSDiva)

(BD Biosciences). Sorted cells were immediately lysed in TRIzol LS (Invitrogen)

and RNA was extracted using the RNeasy Micro kit (QIAGEN).

RNA-Seq

RNA-seq library was prepared for analysis according to the Illumina TruSeq

protocol (http://www.illumina.com). Briefly, poly(A)-tailed mRNA was copied

into cDNA fragments, end repaired, (A)-tailed, ligated with adaptors, and en-

riched by PCR. Six RNA-seq library stocks were pooled and sequenced for

36 bp using the HiSeq 2000.

RNA-Seq Data Analysis

Three biological replicates of FACS-sorted WT;- and Sip1;RCEjNkx2-1
samples were analyzed. The number of reads for the samples ranged

from 13,737,422 to 17,967,187 (Table S4). Mapping was done with TopHat

to the mouse reference genome (mm9) using default parameters (Trapnell

et al., 2009), resulting in 79.03%–79.84% of uniquely mapped reads (Table

S5). Read counts were aggregated for each gene using HT-Seq (http://

www-huber.embl.de/users/anders/HTSeq/doc/overview.html) in the ‘‘union’’

mode (Ensembl r62 annotation). Gene expression levels were normalized

using DE-Seq and filtered on a minimum of 150.0 normalized read count in

at least one condition. Differential expression analysis was performed with

DE-Seq (FDR < 0.05), resulting in 505 genes significantly upregulated and

366 genes significantly downregulated in Sip1;RCEjNkx2-1, compared to

control. GO enrichment was performed using GOrilla on a single ranked list

(http://cbl-gorilla.cs.technion.ac.il).
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qPCR

RNA was obtained from FACS-sorted E14.5 WT;RCEj-, Sip1;RCEj-, and

Sip1;R26-Sip1;RCEjNkx2-1 telencephalic cells and cDNA was made via the

SuperScript III First-Strand Synthesis System (Invitrogen). qPCR was carried

out in duplicate on a LightCycler 480 Instrument (Roche) using SYBR Green

PCR Master Mix (Roche). Relative quantitation was determined using

qBasePLUS software.

Plasmids

Expression constructs used for focal electroporation were based on pCIG,

a pCAGGS-IRES-eGFP plasmid obtained via P. Vanderhaeghen (Megason

and McMahon, 2002). In the multiple cloning site of this vector, we cloned

(1) the mouse Unc5b coding sequence which was isolated from a pcDNA3-

mUnc5b construct (Yamagishi et al., 2011), (2) the rat Unc5b-coding sequence

isolated from the pEGFP-N1/rUnc5b construct (Larrivée et al., 2007), and (3)

the mouse Netrin1 coding sequence isolated from a Ntn1 expression plasmid

(IRCKp5014G0516Q, ImaGenes). To trace electroporated cells in RCEjNkx2-1
brain slices, the pCALNL plasmid (Addgene) was used. To delete Sip1 in

Sip1fl/fl brain slices, a pCIG-Cre plasmid was used (P. Vanderhaeghen).

Focal Electroporation

Focal electroporation of MGEs from E13.5 WT, Sip1fl/fl, or Sip1;RCEjNkx2-1
embryos was done as described previously (Passante et al., 2008) and carried

out with the aforementioned plasmids at 1 mg/ml and 4% fast green (Sigma).

For overexpression, pCIG-mUnc5b was mixed in a 1:1 ratio with pCIG

(0.5 mg/ml) and 1 mg/ml was used for the pCIG-rUnc5b construct. To rescue

the migration of Sip1 KO interneurons, mouse Unc5b siRNAs (Smartpool,

ON-TARGET plus, Thermo Scientific) or a NT pool of mouse siRNAs were

used (200 mM) and mixed with pCALNL plasmid (1 mg/ml) to trace the elec-

troporated cells. Electroporated slices were cultured for 3 DIV using an

air-interface protocol (Polleux and Ghosh, 2002). Slices were fixed with 4%

paraformaldehyde and analyzed via confocal microscopy (Nikon A1R Eclipse

Ti). For each condition, we quantified (via ImageJ software) the total amount of

GFP+ or RFP+ cells in the slice and calculated the percentage of GFP+ or

RFP+ neurons that reached the cortex. Statistical significance was determined

using the c2 test.

Immunohistochemistry in Electroporated Slices

Slices were preincubated for 1 hr with PBS containing 0.3% triton (PBST)

and 10% normal donkey serum. Primary antibodies (rabbit anti-cleaved

caspase-3, 1:500, Cell Signaling Technologies; goat anti-GFP, 1:200, Abcam)

were added overnight at 4�C. After washes in PBST, secondary antibodies

(donkey anti-rabbit CY3 and donkey anti-goat Dylight 488, both at 1:1,000,

Jackson ImmunoResearch) were applied overnight at 4�C. Slices were

washed in PBST andmounted inMowiol, and pictures were taken with a Nikon

A1R Eclipse Ti confocal microscope.
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Fairén, A., et al.; Petilla Interneuron Nomenclature Group. (2008). Petilla termi-

nology: nomenclature of features of GABAergic interneurons of the cerebral

cortex. Nat. Rev. Neurosci. 9, 557–568.

Batista-Brito, R., Machold, R., Klein, C., and Fishell, G. (2008). Gene expres-

sion in cortical interneuron precursors is prescient of their mature function.

Cereb. Cortex 18, 2306–2317.
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